Experimental Results for Heat Capacity and Joule-Thomson Coefficient of Ethane at Zero Pressure

Konrad Bier, ${ }^{1}$ Joachim Kunze, Gerd Maurer, and Holger Sand
Institut für Technische Thermodynamik und Kältetechnik der Universität Karlsruhe ($T H$), 75 Karlsruhe, Federal Republic of Germany

Abstract

The heat capacity at constant pressure c_{p} and the differential Joule-Thomson coefficient μ of ethane were measured with a flow apparatus in the temperature range from 25° to $200^{\circ} \mathrm{C}$ at pressures up to 10 bar . Since the accuracy of the measured values is about 0.1% for c_{p} and 0.5% for μ, by extrapolating these values to zero pressure, the ideal gas state heat capacity c_{p} and the Joule-Thomson coefficient at zero pressure μ° could be determined to about 0.2 and 1.0%, respectively. Whereas the c_{p}° values differ only slightly from existing literature data, the existing μ° data deviate by about $\mathbf{2 0 \%}$ from the new results which are shown to be consistent with precise $p v T$ measurements.

A flow apparatus for the precision measurement of the heat capacity c_{p} and the differential Joule-Thomson coefficient μ of gaseous hydrocarbons and similar substances at temperatures between 25° and $200^{\circ} \mathrm{C}$ and pressures up to 120 bar has been described previously, and results for propylene have been reported (2-4).

This paper reports results for ethane in the low-pressure range. The methods of measurement and of the evaluation of the direct experimental data were the same as in the previous investigation on propylene.

Experimental Results

The investigated samples of ethane were delivered by Deutsche L'Air Liquide Edelgas GmbH, Düsseldorf. A purity of $99.95 \mathrm{~mol} \%$ was guaranteed. According to the statement of the supplier, the remaining impurities are higher hydrocarbons ($\leq 0.04 \mathrm{~mol} \%$), nitrogen ($\leq 0.004 \mathrm{~mol} \%$), carbon dioxide and oxygen (each $\leq 0.001 \mathrm{~mol} \%$), and water ($\leq 0.0005 \mathrm{~mol}$ \%.

Figures 1 and 2 show the experimental c_{p} and μ values at pressures up to 10 bar. As in the previous investigation on propylene, the uncertainty of these values is about 0.1% for c_{p} and 0.5% for $\mu(2,4)$. By extrapolation of the isotherms to zero pressure, the c_{p}° and μ° values of Table I were obtained. The uncertainties of these values are assumed as 0.2% for c_{p}° and 1.0% for μ°.

In Figure 3 the c_{p}° values of this work are compared with data taken from the literature. In the whole temperature range investigated, the results of this paper are somewhat smaller than those of the earlier investigations. The c_{p}° value at $15^{\circ} \mathrm{C}$ measured by Heuse (11) with a flow calorimeter agrees with the result of this work within 0.6%, which is within the limits of the experimental errors of both investigations. Eucken and Parts (9), using the Lummer-Pringsheim method to determine c_{p}, obtained c_{p}° values which are $1.0-1.6 \%$ larger than our results; the deviations are to be compared with an estimated experimental error of $0.5-1.0 \%$.

The results of Kistiakowsky and Rice (13), determined also with the Lummer-Pringsheim method, deviate from our results from 0.6% at about $30^{\circ} \mathrm{C}$ to 1.8% at about $90^{\circ} \mathrm{C}$, the deviations being somewhat larger than those in the previous inves-

[^0]tigation on propylene (2,4). The c_{p}° values of Dailey and Felsing (6), determined with the Bennewitz-Schulze method with a claimed accuracy of 1%, surmount our values by about 1.4%. Rossini et al. (16) critically reviewed the c_{p}° data and accepted the calculated values of Pitzer (15) as most reliable. These values deviate from the results of this work by 0.4% at $25^{\circ} \mathrm{C}$ and 1.6% at $100^{\circ} \mathrm{C}$. Recently, Chao et al. (5) calculated the ideal gas state thermodynamic properties of ethane. In the temperature range between 0° and $200^{\circ} \mathrm{C}$, their c_{p}° values are lower than Pitzer's results by up to 0.3% and exceed the experimental results of this work by a minimum amount of about 0.05% at $25^{\circ} \mathrm{C}$ and a maximum amount of about 1.4% at $100^{\circ} \mathrm{C}$.

The maximum deviation between the literature data and our results occurs in the temperature range above $50^{\circ} \mathrm{C}$. At this temperature, our results show a slight decrease in the slope of the $c_{p}^{\circ} T$-curve. Because of this deviation from the literature data, the accuracy of our c_{p} results was checked: To test the reproducibility of the flow apparatus, the c_{p} measurements for propylene at $75^{\circ} \mathrm{C}$ and low pressure were repeated. The results agreed within 0.2% with c_{p}° data determined two years ago and within 0.1% with values calculated by Kilpatrick and Pitzer (12).

Furthermore, a repetition of the ethane measurements at $75^{\circ} \mathrm{C}$ and 1 bar with a new sample differed by less than 0.15% from the corresponding results obtained two years

Figure 1. Experimental results for heat capacity at constant pressure of ethane
ago. Therefore, we think that the change in the slope of the c_{p} curve in Figure 3 is correct. The decrease in the slope of the c_{p}° curve of ethane occurs in the temperature region where the heat capacity contribution of the hindered internal rotation around the C-C bond reaches its maximum (1). However, the known statistical calculations do not yield this decrease in the slope of the $c_{p}^{\circ} T$-curve.

In Figure 4 the μ° values of this work are compared with the experimental μ° value of ethane determined by Sage et al. (17) and Head (10). Although the μ° data from these two sources agree within a few tenths of 1%, they are nearly 20% smaller than our results.

To decide which values are correct, the μ° values of the different sources were used, together with c_{p} of this work, to calculate the isothermal throttling coefficient at zero pressure

$$
\phi^{\circ}=-\mu^{\circ} \cdot c_{p}^{\circ}
$$

which is correlated to the second virial coefficient B by

$$
\phi^{\circ}=-T^{2} \frac{d}{d T}\left(\frac{B}{T}\right)
$$

($T=$ absolute temperature).
By integrating ϕ^{0} / T^{2} over T, the differences $B / T-(B /$ $\eta_{25^{\circ} \mathrm{C}}$ were calculated and compared with independent results from precise pVT measurements. For the integration the ϕ° values were represented by the equation $\phi^{\circ}=A+B \cdot T$ $+C / T^{2}$. The constants A, B, and C were fitted to the experimental ϕ° values by a least-squares technique. With A / J-bar ${ }^{-1}$.

Figure 2. Experimental results for differential Joule-Thomson coefficient of ethane

Figure 3. Ideal gas state heat capacity at constant pressure of ethane

Figure 4. Differential Joule-Thomson coefficient at zero pressure of ethane

Table I. Ideal Gas State Heat Capacity at Constant Pressure c_{ρ}° and Differential Joule-Thomson Coefficient at Zero Pressure μ° of Ethane

$t,{ }^{\circ} \mathrm{C}^{a}$	10	25	32.2	50	75	100	125	150	200
$c_{p}^{\circ}, \mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~g}^{-1}$	1.679	1.745	1.772	1.845	1.934	2.034	2.148	2.254	2.464
$\mu^{\circ}, \mathrm{K} \cdot \mathrm{bar}^{-1}$	\ldots	1.088	1.019	0.883	0.733	0.606	0.509	0.432	0.318
$\quad a$ corresponding to IPTS-68.									

Figure 5. Differences of B / T for ethane from $p v T$ and μ measurements. $B=$ second virial coefficient; $T=$ absolute temperature
$\mathrm{g}^{-1}=-0.23083, B / J \cdot \mathrm{~K}^{-1} \cdot \mathrm{bar}^{-1} \cdot \mathrm{~g}^{-1}=+3.0636 \cdot 10^{-4}$ and $\mathrm{C} / \mathrm{J} \cdot \mathrm{K}^{2} \cdot \mathrm{bar}^{-1} \cdot \mathrm{~g}^{1}=-1.5612 \cdot 10^{5}$, this equation represents the ϕ° values of this work within a maximum deviation of 0.42%.

Figure 5 shows that the difference $B / T-\left(B / T_{25^{\circ} \mathrm{C}}\right.$ calculated from the μ° values of this work agrees excellently with the results from pvT measurements by Michels et al. (14),

David and Hamann (7), Strein et al. (18), and Douslin and Harrison (8). For example, the deviations in $\Delta(B / T)$ from Michels and Douslin's results are only $0.7-7.4 \%$. On the other hand, the B / T differences obtained from the μ° values of Sage et al. (17) and Head (10) deviated by up to 20% from the results of the $p v T$ measurements. This comparison indicates that the Joule-Thomson coefficients determined by these authors are inconsistent with the accepted thermodynamic properties of ethane.

Literature Cited

(1) Barho, W., dissertation, Universitat Karlsruhe, Karlsruhe, Germany, 1966, and unpublished calculations.
(2) Bier, K., Ernst, G., Kunze, J., Maurer, G., Verfahrenstechnik, 6, 261 (1972).
(3) Bier, K., Ernst, G., Maurer, G., J. Chem. Thermodyn., 6, 1027 (1974).
(4) Bier, K., Ernst, G., Kunze, J., Maurer, G., ibid., p 1039.
(5) Chao, J., Wilhoit, R. C., Zwolinski, B. J., J. Phys. Chem. Ref. Data, 2, 427 (1973).
(6) Dailey, B. P., Felsing, W. A., J. Am. Chem. Soc., 65, 42 (1943).
(7) David, H. G., Hamann, S. D., Proc. Conf. Thermodyn. Transport Properties Fluids, P 74 , London, England, 1958.
(8) Douslin, D. R., Harrison, R. H., J. Chem. Thermodyn., 5, 491 (1973).
(9) Eucken, A., Parts, A., Z. Phys. Chem., 208, 184 (1933).
(10) Head, J. F., PhD thesis, Imperial College of Science and Technology, London, England, 1961.
(11) Heuse, W., Ann. Phys., 59, 86 (1919).
(12) Kilpatrick, J. E., Pitzer, K. S., J. Res. Nat. Bur. Stand., 38, 191 (1974).
(13) Kistiakowsky, G. B., Rice, W. W., J. Chem. Phys., 7, 281 (1939).
(14) Michels, A., Van Straaten, W., Dawson, J., Physica, 20, 17 (1954).
(15) Pitzer, K. S., Ind. Eng. Chem., 36, 829 (1944).
(16) Rossini, F. D., Pitzer, K. S., Arnett, R. L., Braun, R. M., Pimentel, G. C., "Selected Values of Physical and Thermodynamic Properties of Hydrocarbons and Related Compounds," p 633, Carnegie Press, Pittsburgh, Pa., 1953.
(17) Sage, B. H., Webster, D. C., Lacey, W. N., Ind. Eng. Chem., 29, 658 (1937).
(18) Strein, K., Lichtenthaler, R. N., Schramm, B., Schäfer, KI., Ber. Bunsenges. Phys. Chem., 75, 1308 (1971).

Received for review October 7, 1974. Accepted August 13, 1975. Financial support by the Deutsche Forschungsgemeinschaft.

Density and Crystallinity Measurements of Liquid and Solid n-Undecane, n-Tridecane, and 0 -Xylene from 200 to 350 K

Jerome G. Hust ${ }^{1}$ and Raymond E. Schramm
Cryogenics Division, Institute for Basic Standards, National Bureau of Standards, Boulder, Colo. 80302

Abstract

Densities of solid and liquid n-undecane, n-tridecane, and o-xylene are reported for temperatures from 200 to 350 K . Density increases upon freezing by 13,13 , and 12%, respectively, for these hydrocarbons. The data are presented graphically and are also represented by equations to within the scatter of the data. The uncertainties of the data are $\mathbf{0 . 2 \%}$ for the liquid and $\mathbf{1 \%}$ for the solid state. X-ray examinations revealed that these materials have complex crystalline structures when frozen. Near 200K the main crystal structure is orthorhombic, but several phase transformations occur for each of these materials between 200 K and the melting point.

[^1] (MSFC-NASA) required a temperature stabilizing device at

[^2]several temperatures below ambient. The resulting device, referred to as a thermal capacitor, is simply a container filled with hydrocarbon. Temperature stability is achieved at the freezing point of the hydrocarbon because of the reversible heat reservoir created by its latent heat of fusion. To obtain stability over a range of temperatures, several hydrocarbons, n-undecane, n-tridecane, and o-xylene, have been used. During operation the hydrocarbon container experiences large strains resulting from the volume changes of the hydrocarbon as it cycles between the liquid and solid state. In the past the container has broken after repeated thermal cycles. Therefore, MSFC requested that NBS determine the liquid and solid volùme changes of these hydrocarbons at temperatures from 200 to 350K. NBS was also asked to examine the crystallinity of these materials from 200K to their freezing points by X-ray methods.
The following sections present descriptions of the materials, methods of density and specific volume measurements, and X-ray examination. Finally, the results of both density and

[^0]: ${ }^{4}$ To whom correspondence should be addressed.

[^1]: As part of the Skylab program, the Marshall Space Flight Center of the National Aeronautics and Space Administration

[^2]: ${ }^{1}$ To whom correspondence should be addressed.

